Journal of Organometallic Chemistry, 435 (1992) 291–297 Elsevier Sequoia S.A., Lausanne JOM 22703

Synthese und Kristallstruktur von $Cp'_2 Zr\{P(SiMe_3)_2\}_2$ ($Cp' = \eta^5 \cdot C_5 H_4 Me$) — Erste röntgenstrukturanalytische Untersuchung eines Zirkonocen-Bisphosphido-Komplexes

Frank Lindenberg und Evamarie Hey-Hawkins

Institut für Anorganische Chemie der Universität Karlsruhe, Engesserstraße, W-7500 Karlsruhe (Deutschland)

(Eingegangen den 31. Januar 1992)

Abstract

The reaction of $Cp'_2 ZrCl_2$ ($Cp' = \eta^5 - C_5 H_4 Me$) with two equivalents of $Li(THF)_2 P(SiMe_3)_2$ in toluene yields $Cp'_2 Zr\{P(SiMe_3)_2\}_2$ (1) in high yield. 1 is obtained as deep violet crystals. Variable temperature ³¹P NMR studies (25 to $-100^{\circ}C$) indicate the presence of two equivalent P atoms in solution. An X-ray structure investigation shows that 1 exhibits two almost identical Zr-P bonds (Zr-P1 2.634(2), Zr-P2 2.600(2) Å) in the solid state, and each phosphido group shows a nearly planar arrangement.

Zusammenfassung

Die Umsetzung von $Cp'_2 ZrCl_2 (Cp' = \eta^5 - C_5 H_4 Me)$ mit zwei Äquivalenten an Li(THF)₂P(SiMe₃)₂ in Toluol liefert $Cp'_2 Zr\{P(SiMe_3)_2\}_2$ (1) in Form von tief-violetten Kristallen in guter Ausbeute. Temperaturabhängige ³¹P-NMR-spektroskopische Untersuchungen (25 bis -100°C) weisen auf das Vorliegen von zwei äquivalenten P-Atomen in Lösung hin. Die röntgenstrukturanalytische Untersuchung zeigt, daß auch im Festkörper die Zr-P-Bindungslängen (Zr-P1 2.634(2), Zr-P2 2.600(2) Å) fast gleich sind. Jeder Phosphidoligand weist eine angenähert planare Geometrie auf.

Seit einiger Zeit beschäftigen wir uns mit der Synthese, Reaktivität und strukturellen Charakterisierung P-SiMe₃-funktioneller Zirkonocen-Phosphido-Komplexe [1]. Während die Zirkonocen-Monophosphido-Komplexe $Cp_2Zr\{P(SiMe_3)_2\}$ -(X) (X = Cl, Me) in Form gut ausgebildeter Einkristalle erhalten und röntgenstrukturanalytisch charakterisiert werden konnten [2], bildet der entsprechende Zirkonocen-Bisphosphido-Komplex $Cp_2Zr\{P(SiMe_3)_2\}_2$ [1] verzwillingte Kristalle, was bisher eine Strukturlösung verhinderte. Durch den Einsatz des methyl-substituierten Cyclopentadienyl-Liganden Cp' (Cp' = η^5 -C₅H₄Me) gelang

Correspondence to: Dr. E. Hey-Hawkins.

es uns nun, auch den entsprechenden Zirkonocen-Bisphosphido-Komplex Cp'_2 -Zr{P(SiMe_3)_2}_2 (1) in einkristalliner Form zu erhalten und strukturell zu charakterisieren.

Synthese und spektroskopische Untersuchungen

Der Bisphosphido-Komplex 1 ist durch die Umsetzung von Cp'_2ZrCl_2 [3] mit zwei Äquivalenten Li(THF)₂P(SiMe₃)₂ [4] in Toluol erhältlich. Umkristallisieren aus Pentan liefert 1 in Form von großen, tief-violetten Kristallen.

Ein Phosphido-Ligand PR₂⁻ kann

- (a) als Einelektronendonor gegenüber 17-Elektronenfragmenten (z.B. CpFe(CO)₂
 [5]) oder
- (b) als Dreielektronendonor gegenüber Übergangsmetallfragmenten mit 15 oder weniger Elektronen dienen [6].

Die unterschiedliche Art der Bindung drückt sich sowohl in der Geometrie des P-Atoms der Phosphido-Gruppe (pyramidal (a), trigonal planar (b)) als auch in der chemischen Verschiebung im ³¹P-NMR-Spektrum aus (Resonanz (b) tieffeld verschoben gegenüber Resonanz (a)). In 1 sind zwei P(SiMe₃)₃-Liganden an das 14-Elektronenfragment Cp'₂Zr gebunden, so daß auch hier der Phosphido-Ligand als Mehrelektronendonor wirken sollte. Im ³¹P{¹H}-NMR-Spektrum tritt für 1 nur ein Singulett bei -71.2 ppm (C₆D₆) auf, was der chemischen Verschiebung des unsubstituierten Komplexes $Cp_2Zr\{P(SiMe_3)_2\}_2$ (-71.1 ppm, C_6D_6 [1]) entspricht. Offenbar ist der Einfluß des Cp'-Liganden eher als ein kristallographischer als ein elektronischer Effekt zu deuten. Verglichen mit der Resonanz des Lithiumphosphids (-297.7 ppm [4]) sind in beiden Bisphosphido-Komplexen die Resonanzen um etwa 226 ppm tieffeld verschoben, was auf partiellen Mehrfachbindungscharakter der Zr-P-Bindungen hinweist. Im Gegensatz hierzu wird nur eine geringe Tieffeld-Verschiebung der Resonanz des P-Atoms in Komplexen beobachtet, in denen der $P(SiMe_3)_2$ -Ligand als Einelektronendonor wirkt (z.B. in $CpFe(CO)_2 P(SiMe_3)_2, \ \delta = -266.3 \text{ ppm [5]}).$

Tieftemperatur-³¹P-NMR-spektroskopische Untersuchungen an Zirkonocen-Bis(dialkyl- bzw. diaryl)phosphido-Komplexen $Cp_2Zr(PR_2)_2$ weisen darauf hin, daß auch für sperrige Liganden R bei Raumtemperatur in Lösung die mesomere Form C vorliegt, bei der beide P-Atome magnetisch äquivalent sind (nur ein Signal wird im ³¹P-NMR-Spektrum beobachtet) [7].

Hingegen läßt das Auftreten von zwei Resonanzen unterhalb von -100° C (bei $R = C_6H_{11}$, cyclohexyl) darauf schließen, daß bei tiefer Temperatur die mesomeren Formen A bzw. B vorliegen [7]. Eine den mesomeren Formen A, B entsprechende Struktur wurde auch im Festkörper diskutiert und konnte für zwei Hafnocen-Bisphosphido-Komplexe, Cp₂Hf(PEt₂)₂ [7] und Cp₂Hf{P(SiMe₃)₂}₂ [8], auch röntgenstrukturanalytisch belegt werden. Ein entsprechender Beweis steht für Zirkonocen-Bisphosphido-Komplexe noch aus.

Der P(SiMe₃)₂-Ligand sollte einen größeren sterischen Anspruch besitzen als der PCy₂-Ligand. Daher erwarteten wir, auch für 1 die mesomeren Formen A, B bei tiefer Temperatur NMR-spektroskopisch nachweisen zu können. Das Tieftemperatur-³¹P-NMR-Spektrum von 1 in THF- d^8 zeigt jedoch bis – 100°C nur ein Singulett [-75.3 ppm (25°C), -86.2 ppm (-100°C)], was darauf schließen läßt, daß die Aktivierungsenergie für den Übergang C \rightarrow A, B kleiner ist als in Cp₂Hf(PEt₂)₂ (6.0 ± 0.2 kcal/mol bei – 100°C [7]) oder daß die Formen A, B nicht in Lösung auftreten. Da unsere strukturellen Untersuchungen zeigen, daß in 1 zwei angenähert gleich lange Zr–P-Bindungen auftreten und die Geometrie der P-Atome beider Phosphido-Gruppen recht ähnlich ist, neigen wir dazu, den letzteren Grund anzunehmen. Jedoch ist anzumerken, daß auch in Cp₂Hf-{P(SiMe₃)₂}₂ bis -70°C im ³¹P-NMR-Spektrum nur eine Resonanz auftritt, obwohl röntgenstrukturanalytisch das Vorliegen von zwei unterschiedlichen P-Atomen im Festkörper gezeigt werden konnte [8].

Im Massenspektrum (EI-MS) treten neben dem Molekülpeak für 1 (m/z = 602)nur charakteristische Signalgruppen bei 425 $[M^+ - P(SiMe_3)_2]$ und 247 $[M^+ - 2P(SiMe_3)_2]$ sowie Abbauprodukte der Fragmente Cp'_2Zr und $P(SiMe_3)_2$ auf. Offenbar erfolgt unter massenspektroskopischen Bedingungen primär eine Spaltung der Zr-P-Bindungen. Signale für Zerfallsprodukte, die auf eine primäre Spaltung der P-Si-Bindung schließen ließen, werden nicht beobachtet.

Röntgenstrukturanalyse

In 1 ist das Zr-Atom verzerrt tetraedrisch von zwei Methylcyclopentadienyl-Liganden und den P-Atomen der P(SiMe₃)₂-Gruppen umgeben (Fig. 1 und 2, Tab. 1) [9*]. Die Verzerrung drückt sich in einem stark aufgeweiteten Ze1-Zr-Ze2-Winkel (Ze = geometrischer Mittelpunkt eines Cp-Ringes) von $127.7(1)^{\circ}$ aus, dem ein kleiner P1–Zr–P2-Bindungswinkel von 96.95(7)° gegenüber steht. Die Zr–P-Bindungslängen sind mit 2.634(2) (Zr-P1) und 2.600(2) Å (Zr-P2) nur wenig unterschiedlich (0.03 Å). Hingegen unterscheiden sich die Metall-P-Bindungen in dem entsprechenden Hafnocen-Bisphosphido-Komplex $Cp_2Hf\{P(SiMe_3)_2\}_2$ um 0.1 Å (Hf-P1 2.553(1), Hf-P2 2.654(1) Å) [8], und noch ausgeprägter ist der Unterschied in dem Komplex Cp₂Hf(PEt₂)₂, in dem die Differenz in den Hf-P-Bindungslängen 0.2 Å beträgt (Hf-P1 2.488(1), Hf-P2 2.682(1) Å) [7]. Auffällig ist, daß in dem Komplex Cp₂Hf{P(SiMe₃)₂}₂ das P-Atom, das die kürzere Hf-P-Bindung aufweist, eine trigonal planare Geometrie aufweist (Winkelsumme an P1 360.0(1)° [8]), während das P-Atom, das an der längeren Hf-P-Bindung beteiligt ist, angenähert pyramidale Geometrie besitzt (Winkelsumme an P2 336.0(1)°) [8]. Dieser Trend ist auch in 1, wenn auch weniger stark ausgeprägt, sichtbar. So beträgt die Winkelsumme an P1, das die längere Zr-P-Bindung ausbildet, 351.2°, an P2 358.3°. Beide P-Atome weisen also eher eine trigonal planare als pyramidale Geometrie auf. Für die größere Planarität der Phosphido-Gruppe des P-Atoms P2 spricht auch die geringere Abweichung des Zr-Atoms von der Ebene P2,Si3,Si4 (0.51 Å), während eine größere Abweichung des Zr-Atoms von der Ebene P1.Si1.Si2 auftritt (1.17 Å).

^{*} Die Literatur mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Fig. 1. Molekülstruktur von $Cp'_2Zr\{P(SiMe_3)_2\}_2$ (1) (SCHAKAL-Plot, ohne H-Atome).

Der stark verkürzte Hf-P1-Bindungsabstand in $Cp_2Hf(PR_2)_2$ wird durch eine Rückbindung von P1 zum Hf-Atom erklärt, wodurch die Hf-P-Bindung Doppelbindungscharakter aufweist. Hierbei kann die Rückbindung über das freie Elektro-

Fig. 2. Seitenansicht des $Cp'_2Zr(PSi_2)_2$ -Fragments.

Tabelle 1	
Ausgewählte Bindungsabstände (Å) und	-winkel (°) in 1

Zr-P1	2.634(2)	Zr-P2	2.600(2)	
Zr-Ze1	2.214(2)	Zr-Ze2	2.214(5)	
P1-Si1	2.227(2)	P1-Si2	2.234(2)	
P2-Si3	2.231(2)	P2-Si4	2.234(2)	
Si1-C11	1.880(4)	Si1-C12	1.881(5)	
Si1-C13	1.885(4)	Si2-C21	1.857(5)	
Si2-C22	1.878(5)	Si2-C23	1.854(5)	
Si3-C31	1.871(5)	Si3-C32	1.877(5)	
Si3-C33	1.872(5)	Si4-C41	1.872(5)	
Si4-C42	1.877(6)	Si4-C43	1.880(5)	
C51-C56	1.507(6)	C61-C66	1.517(6)	
Mittlere Bindungslän	igen			
Zr-C(Cp)	2.515(5)	C(Cp)–C(Cp)	1.404(6)	
C-H	0.960(7)			
P1–Zr–P2	96.95(7)	P1-Zr-Ze1	104.47(7)	
P1-Zr-Ze2	111.5(1)	P2–Zr–Ze1	106.33(7)	
P2-Zr-Ze2	105.6(1)	Ze1-Zr-Ze2	127.7(1)	
Zr-P1-Si1	120.93(8)	Zr-P1-Si2	124.99(9)	
Si1-P1-Si2	105.25(8)	Zr-P2-Si3	131.76(8)	
Zr-P2-Si4	120.24(8)	Si3-P2-Si4	106.33(9)	
P1-Si1-C11	110.2(2)	P1-Si1-C12	111.0(2)	
P1-Si1-C13	114.5(2)	C11-Si1-C12	103.2(2)	
C11-Si1-C13	107.3(2)	C12-Si1-C13	109.9(2)	
P1-Si2-C21	113.3(2)	P1-Si2-C22	110.6(2)	
P1-Si2-C23	112.2(2)	C21-Si2-C22	106.5(2)	
C21-Si2-C23	108.2(3)	C22-Si2-C23	105.6(2)	
P2-Si3-C31	114.4(2)	P2-Si3-C32	112.1(2)	
P2-Si3-C33	111.4(2)	C31-Si3-C32	106.9(2)	
C31-Si3-C33	106.0(2)	C32-Si3-C33	105.4(2)	
P2-Si4-C41	111.8(2)	P2-Si4-C42	110.1(2)	
P2-Si4-C43	112.8(2)	C41-Si4-C42	109.8(3)	
C41-Si4-C43	106.9(2)	C42-Si4-C43	105.3(2)	
C52-C51-C56	125.9(4)	C55-C51-C56	127.7(4)	
C62-C61-C66	126.3(4)	C65-C61-C66	127.7(4)	
Mittlerer C(Cp)–C(C	Cp)–C(Cp)-Bindungswin	kel: 108.0(4)		

nenpaar an P1 in das unbesetzte a_1 -Orbital des Cp₂Hf-Fragments erfolgen. Eine maximale Überlappung dieser beiden Orbitale ist für die oben genannten Komplexe bei einer orthogonalen Anordnung der Ebenen Hf,P1,P2 und P1,Si1,Si2 bzw. P1,C1,C3 gewährleistet [10]. In Cp₂Hf(PEt₂)₂ beträgt der Winkel zwischen diesen Ebenen 90°, in Cp₂Hf{P(SiMe₃)₂}₂ 120.5°; entsprechend weist die kürzere Hf-P1-Bindungslänge des PEt₂-Derivates auf eine stärkere Rückbindung, verglichen mit der P(SiMe₃)₂-substituierten Verbindung, hin. In 1 betragen die Diederwinkel zwischen den Ebenen P1,Zr,P2 (I) und P1,Si1,Si2 (II) bzw. P2,Si3,Si4 (III) 56.7° (I/II) bzw. 122.4° (I/III), so daß auch hier für beide P-Atome Mehrfachbindungscharakter der Zr-P-Bindungen angenommen werden kann (mesomere Form C), wobei die Rückbindung weniger stark ist als in der Hf-P1-Bindung von Cp₂Hf{P(SiMe₃)₂}₂.

Die Ebenen der Phosphidogruppen (II und III) stehen nahezu orthogonal zueinander (Diederwinkel II/III 89.4°), wodurch offensichtlich der sterische Einfluß der SiMe₃-Gruppen minimalisiert wird.

Insgesamt ist jedoch verwunderlich, daß die analogen Verbindungen Cp_2Hf -{P(SiMe_3)₂}₂ und Cp'_2Zr {P(SiMe_3)₂}₂ ausgeprägte Unterschiede in den Metall-Phosphor-Bindungslängen und der Geometrie der P-Atome der P(SiMe_3)₂-Gruppen aufweisen. Die Ursache hierfür liegt sicherlich nicht im Einfluß des methylsubstituierten Cp-Liganden in 1, da sowohl Cp_2Zr {P(SiMe_3)₂}₂ als auch Cp'_2Zr {P(SiMe_3)₂}₂ im ³¹P-NMR-Spektrum nahezu identische chemische Verschiebungen aufweisen. Möglicherweise sind Packungseffekte für die beobachteten Unterschiede verantwortlich. Theoretische Untersuchungen an 1 sind geplant, um ein besseres Verständnis der Bindungsverhältnisse der Zr-P-Bindungen in diesem Komplex zu erhalten.

Experimenteller Teil

Alle Handhabungen wurden unter Luft- und Feuchtigkeitsausschluß ausgeführt. Die verwendeten Lösungsmittel wurden vor Gebrauch getrocknet [11] und unter Stickstoff destilliert. Die NMR-Spektren wurden mit dem Gerät AC 250 der Firma Bruker aufgenommen (Standard ¹H-NMR: internes C₆D₆; ³¹P-NMR: externe 85%ige H₃PO₄). Infrarot-Spektren wurden als Nujol-Verreibungen zwischen CsI-Platten im Bereich von 200–4000 cm⁻¹ mit einem Perkin–Elmer-Gerät Modell 883 registriert. Die Schmelzpunktsbestimmung wurde an einer unter gereinigtem und getrockneten Stickstoff in einer Kapillare eingeschmolzenen Probe durchgeführt, der Schmelzpunkt ist unkorrigiert. Cp'₂ZrCl₂ [3] und Li(THF)₂P(SiMe₃)₂ [4] wurden nach Literaturvorschrift hergestellt.

$Cp', Zr\{P(SiMe_3), \}, (1)$

Zu einer Lösung von Cp'₂ZrCl₂ (4.2 g, 13.1 mmol) in 20 ml Toluol wird bei Raumtemperatur eine Lösung von Li(THF)₂P(SiMe₃)₂ (8.7 g, 26.5 mmol) in 20 ml Toluol gegeben. Das Reaktionsgemisch färbt sich sofort intensiv tief-violett. Nach beendeter Zugabe wird noch 2 h bei Raumtemperatur gerührt. Dann wird das Lösungsmittel i.V. abgezogen und der Rückstand in *ca*. 25 ml Pentan gelöst. Abkühlen auf -30° C liefert 1 in Form von großen tief-violetten Kristallen. Ausb.: 6.4 g (81% d. Th.). Schmp.: 98–101°C. IR-Spektrum: 1492s [δ_{as} CH₃, P(SiMe₃)₂. ν_s CC, Cp]; 1251st [δ_s CH₃, P(SiMe₃)₂]; 1044st, br; 1024st, br [δ_{as} CH, Cp]; 933m; 847sst, 788m, Sch, 756m [ρ_s CH₃, P(SiMe₃)₂], ρ_{as} CH₃, P(SiMe₃)₂, ρ_s CH, Cp, γ_{as} CH, Cp]; 679m [ν_{as} SiC₃, P(SiMe₃)₂]; 625m [ν_s SiC₃, P(SiMe₃)₂]; 460m, Sch; 434m; 362s; 334s [ν_{as} , ν_s Zr-P ?] cm⁻¹.

¹H-NMR (C₆D₆, 250 MHz, $\delta/(\text{ppm})$): 0.53d (36H, ³*J*(³¹P⁻¹H) 4.0 Hz, Si-C*H*₃) 1.83s (6H, C₅H₄(C*H*₃)), 5.84s (4H, C₅*H*₄(CH₃)), 6.34t (4H, C₅*H*₄(CH₃), *J*(³¹P⁻¹H) 2.1 Hz). ³¹P-NMR (C₆D₆, 101 MHz, δ/ppm , 25°C): -71.2, s; (THF-*d*⁸, 101 MHz, δ/ppm) 25°C: -75.3, s; -100°C: -86.2, s.

EI-MS: $(T_Q \ 180^{\circ}\text{C}) \ m/z$: 602 $(M^+ \equiv [\text{Cp}'_2\text{Zr}\{\text{P}(\text{SiMe}_3)_2\}_2\}^+)$, 425 $(M^+ - \text{P}(\text{SiMe}_3)_2 \equiv [\text{Cp}'_2\text{Zr}\text{P}(\text{SiMe}_3)_2]^+)$, 247 $(M^+ - 2\text{P}(\text{SiMe}_3)_2 \equiv [\text{Cp}'_2\text{Zr}]^+)$, sowie Abbauprodukte von $\text{Cp}'_2\text{Zr}$ und $\text{P}(\text{SiMe}_3)_2$. Die bei m/z = 602, 425 und 247 auftretenden Signalgruppen weisen die entsprechende berechnete Isotopenverteilung auf.

Kristallstrukturanalyse

Datensammlung: bei -67° C auf einem STOE-STADI IV-Diffraktometer mit Graphitmonochromator, Szintillationszähler, Mo- K_{α} -Strahlung (λ 0.71069 Å); 7290 symmetrieunabhängige Reflexe, 6981 mit $F \ge 5\sigma(F_{0})$, Meßbereich: $3^{\circ} \le 2\theta \le 56^{\circ}$, Wyckoff- ω -Scan.

Kristalldaten: $C_{24}H_{50}P_2Si_4Zr$; 604.18 [amu], triklin, $P\overline{1}$ (Nr. 2), a 9.923(7), b 11.298(9), c 16.391(10) Å, α 96.73(6), β 104.85(5), γ 105.79(6)°, V 1674.3 Å³, Z = 2, d_{ber} 1.202 g/cm³, μ (Mo- K_{α}) = 5.11 cm⁻¹, keine Absorptionskorrektur.

Strukturlösung: Direkte Methoden [12], Verfeinerung mit SHELX-76 [13], 282 Parameter, Zr-, P-, Si- und C-Atome anisotrop, H-Atome isotrop auf idealisierten Positionen, Gewichtung $1/(\sigma^2(F_{0}))$, R = 0.044, $R_{w} = 0.044$.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und Herrn Prof. Dr. D. Fenske, Universität Karlsruhe, für die großzügige Unterstützung dieser Arbeit. Herrn Dr. H. Goesmann, Universität Karlsruhe, danken wir für die Messung der Beugungsintensitäten.

Literatur und Bemerkungen

- 1 E. Hey-Hawkins, M.F. Lappert, J.L. Atwood und S.G. Bott, J. Chem. Soc., Dalton Trans., (1991) 939.
- 2 E. Hey, M.F. Lappert, J.L. Atwood und S.G. Bott, Polyhedron, 7 (1988) 2083.
- 3 E. Samuel, Bull. Soc. Chim. Fr., (1966) 3548.
- 4 G. Fritz und W. Hölderich, Z. Anorg. Allg. Chem., 422 (1976) 104.
- 5 H. Schäfer, Z. Anorg. Allg. Chem., 467 (1981) 105; L. Weber und K. Reizig, Z. Naturforsch., Teil B, 39 (1984) 1350.
- 6 A.H. Cowley, Polyhedron, 3 (1984) 389; idem, Acc. Chem. Res., 17 (1984) 386.
- 7 R.T. Baker, J.F. Whitney und S.S. Wreford, Organometallics, 2 (1983) 1049.
- 8 L. Weber, G. Meine, R. Boese und N. Augart, Organometallics, 6 (1987) 2484.
- 9 Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, W-7014 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56064, der Autoren und des Zeitschriftenzitats angefordert werden.
- 10 J.W. Lauher und R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 11 D.D. Perrin, W.L.F. Armarego und D.R. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, 1980.
- 12 G. Sheldrick, SHELXS-86, Programm for Crystal Structure Solution, Göttingen, 1986.
- 13 G. Sheldrick, SHELX-76, Programm for Crystal Structure Determination, Cambridge 1976.